Malaysia Stroke Conference 2022 Report and Stroke Update

Crystal Sing Chiek Teoh¹, Yik Hon Ho², Jie Ping Schee³, Caryn Tsujean Lim², Irene Looi⁴, Wan Asyraf Wan Zaidi⁵, Fan Kee Hoo⁶

¹Department of Medicine, Penang Hospital, Georgetown, Penang, Malaysia, ²Department of Cardiology, Sarawak Heart Centre, Kota Samarahan, Sarawak, Malaysia, ³Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, ⁴Clinical Research Centre, Seberang Jaya Hospital, Perai, Penang, ⁵Department of Medicine, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Malaysia, ⁶Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia

BACKGROUND AND PURPOSE

Stroke is a leading source of disability and a major contributor to the disabilityadjusted life years index. It is a needless impediment to sustainable social and economic growth. Because of the enormity of the burden of stroke globally, there is a real need to develop strategies to reduce its impact. With this in mind, the MSN Stroke Council together with the Malaysian Neuro-interventional Society, Malaysian Society of Geriatric Medicine and Malaysian Society of Rehabilitation Physicians have jointly organised this conference on stroke care in August 2022 with the theme of FAST: Brain and Heart Attack. Representatives from the Malaysian Society of Emergency Physicians, National Heart Association of Malaysia, and Family Medicine Association Malaysia were involved, together with other delegates from university hospitals, and Ministry of Health hospitals. Contributions from delegates allowed a broad set of principles to be put in place concerning stroke care that may be generalisable locally and regionally.

SUMMARY OF REPORTS

The Malaysia Stroke Conference was held from 12th to 14th August 2022, covering **a few key points** made in the areas of hyperacute and acute stroke, primary and secondary stroke prevention, stroke in geriatrics, rehabilitation, reorganisation of stroke network and bridging stroke care between district and tertiary hospital in Malaysia, rehabilitation, and role of Non-Government Organisation (NGO) i.e. Social Security Organisation (SOCSO) in stroke care.

CONCLUSION

This conference report provides a comprehensive review of the evidence regarding recent scientific and clinical advances in stroke and stroke systems of care to date. The consensus recommendations embodied in this report provides a framework for local and regional stroke service providers to establish minimum standards of stroke care and thus make a contribution toward reducing the global burden of stroke.

SCOPE AND PURPOSE

Malaysia Stroke Conference was an initiative of the Malaysia Stroke Council, Malaysian Neuro-interventional Society, Malaysian Society of Geriatric Medicine and Malaysian Society of Rehabilitation Physicians. To obtain a broad representation, delegates from the Malaysian Society of Emergency Physicians, the National Heart Association of Malaysia, Family Medicine Association Malaysia were involved, together with other delegates from university hospitals, the Ministry of Health hospitals were invited to contribute so that a broad set of principles could be put in place concerning stroke care, especially with continuous rise in the prevalence of diabetes, hyperlipidaemia, and obesity, ageing populations and ongoing Covid-19 pandemic. At the same time, regional variations in available resources for healthcare management, in general, could be taken into account. The general aims of the conference were to produce a series of statements with accompanying goals and specific interventions in the following areas: (1) Hyperacute stroke (2) Acute stroke (3) Mechanical thrombectomy (4) Tandem occlusions (5) Tenecteplase in hyperacute stroke (6) Basilar stroke intervention (7) Intracerebral haemorrhage (8) Primary and Secondary stroke prevention (9) Stroke in geriatrics (10) Cerebrovascular disease and Neurocognitive disorders (11)Rehabilitation (12)Reorganisation of stroke network and bridging stroke care in Malaysia (13) The role of Social Security Organisation (SOSCO) in stroke care and (14) Telemedicine

METHODS

The delegates were initially addressed by the following speakers at the opening ceremony: Associate Professor Dr Hoo Fan Kee (Chairperson of Malaysia Stroke Council & Malaysia Stroke Conference 2022) and Dr Sapiah Binti Sapuan (Head of Neurology Service). It was followed by the MSC 2022 Rising Star Award Ceremony which recognized the exceptional efforts of individuals who have contributed to the development and improvement of their respective stroke hospitals. Examples of works include: a) Initiation of stroke services b) Training of hospital stroke team c) Assisting the state stroke champions in stroke thrombolysis d) Stroke data collection and monitoring. The event continued with the announcement and handling of WSO Angels Award Winners to hospitals that exemplified excellent stroke care service.

The first part of the program consisted of a series of plenary sessions on various topics with regard to optimising thrombolysis and thrombectomy access in Malaysia, stroke in geriatric populations, addressing the critical interphase of critical intervention, the use of point of care ultrasound (POCUS) in stroke, evolution and challenges of stroke service in Covid-19 pandemic, the role of SOCSO in stroke care, post-stroke neurocognitive disorders and stroke rehabilitation. There were also symposiums discussing subjects on telestroke, the role of emergency medicine in hyperacute stroke, stroke prevention in atrial fibrillation, secondary stroke prevention, the role of antiplatelet therapy and Tenecteplase for acute ischemic stroke.

In the second part of the congress, stroke preceptor sessions were conducted in which issues related to diagnosis, imaging selection, inpatient investigations and management, stroke mimickers, hospital workflow and trials related to stroke in extended hours and basilar stroke were addressed.

A draft of a consensus statement was presented to the group after which interactive discussion, modification of the statement, and/or complete replacement with a new statement were undertaken.

The consensus statements were reviewed by a broadly based consensus panel, the membership of which consisted of stroke neurologists, geriatricians, emergency and rehabilitation physicians and experts from SOCSO.

The following guidelines can be adopted according to the extent of resources in each state.

ABBREVIATIONS

Abbreviations	Meaning		
ADAPT	Adoption of direct aspiration as first pass mechanical		
	thrombectomy		
AIS	Acute ischemic stroke		
ASCVD	Atherosclerotic cardiovascular disease		
ASU	Acute stroke unit		
BP	Blood pressure		
CI	Cognitive impairment		
CMBs	Cerebral microbleeds		
CRAO	Central retinal artery occlusion		
CSC	Comprehensive stroke centre		
СТА	CT angiography		
DAPT	Dual antiplatelet therapy		
ECG	Electrocardiogram		
EVT	Endovascular thrombectomy		
FBS	Fasting blood sugar		
HbA1c	Haemoglobin A1C		
HTRA 1	HtrA Serine Peptidase 1		
IVT	Intravenous thrombolysis		
ICA	Internal carotid artery		
LDL	Low-density lipoprotein		
LVO	Large vessel occlusion		
MCA	Middle cerebral artery		

MI	Myocardial infarction		
MMSE	Mini Mental State Examination		
MoCA	Montreal Cognitive Assessment		
MT	Mechanical thrombectomy		
MTHFR	Methylenetetrahydrofolate reductase		
mTICI	modified Treatment In Cerebral Ischaemia		
NIHSS	National Institutes of Health Stroke Scale		
NASAM	National Stroke Association of Malaysia		
NSTEMI/UA	Non-ST elevation myocardial infarction/ unstable angina		
PSCI	Post stroke cognitive impairment		
SAPT	Single antiplatelet		
T2DM	Type 2 Diabetes Mellitus		
TIA	Transient ischemic attack		
VTE	Venous thromboembolism		

PRIMARY PREVENTION

Reviewer: Fan Kee Hoo

Issues

1. Rising epidemic of vascular risk factors such as overweight/obesity, smoking, hypertension, diabetes and hypercholesterolaemia.

2. Challenges faced by Malaysia's primary care can be divided into system/providers factors (high patient load, time constraints, high staff turnover and shortages of well-trained staff, lack of continuity of care, lack of adherence to disease guidelines) and patients' factors (poor medication adherence, complex comorbidities, lack of self-management skills).

3. Navigating the future of healthcare in the era of digital health.

Goals

 To construct and implement community-specific programs to identify and modify stroke risk factors, hence reducing the incidence of stroke and vascular dementia.
 To encourage primary health care to be proactive in empowering patients and carers.

To enable patients to participate more in self-management by increasing their knowledge, skills and confidence and invite informed and shared decision-making.
 To embrace the advances in digital health by introducing electronic health (e-Health) which enables the effective electronic exchange of health-related data between primary and tertiary care and ensures consistency in healthcare provision.

Specific interventions

1. Chronic Care Model was employed to improve health outcomes and quality of care in primary care settings. The 6 elements under this care model are:

- a) Organisation of healthcare
- b) Design of delivery system
- c) Self-management support
- d) Decision support
- e) Clinical information systems
- f) Community (providing informative resources and equitable policies)
- 2. Identify, treat, and monitor those with vascular risk factors at the primary care level.

(Guidelines for the Primary	y Prevention of	Stroke/	Malaysia CPG)

Elements	Recommendations		
Physical activity	Moderate to vigorous-intensity aerobic physical activity at least 40 min per day for a minimum of 3 - 4 days per week is recommended to reduce the risk of stroke.		
Diet	A diet with a reduced intake of sodium, and saturated fats, and emphasises on fruits, vegetables, and low-fat dairy products is recommended.		
Hypertension	 Regular BP screening, lifestyle modification and appropriate pharmacological therapy are recommended. In the general population aged 60 years or older, initiate pharmacologic treatment to lower BP at a blood pressure of ≥ 150/90mmHg and treat to a goal SBP ≤ 150/90mmHg. 		
Cholesterol	1. Treatment with an HMG coenzyme-A reductase inhibitor		

	(statin) medication is recommended for the primary prevention of	
	ischemic stroke in patients.	
	2. Treatment with non-statin lipid-lowering therapies such as	
	fibric acid derivatives, bile acid sequestrants, niacin, and	
	ezetimibe may be considered in patients who cannot tolerate	
	statins.	
	3. High-risk group: Aim LDL of <1.8 mmol/l (to tailor according	
	to risk and CVSD); Intermediate and low risk: Aim LDL of	
	<3.4mmol/l.	
Diabetes mellitus	1. More intensive HbA1c glycaemic control targets (<6.5%) may	
	be required for optimal ischemic stroke prevention.	
	2. Target BP for diabetics is <130mmHg systolic and <80mmHg	
	diastolic, preferably <120mmHg if tolerated.	
Obesity	Among overweight (BMI=25 to 29 kg/m2) and obese (BMI>30	
	kg/m2) individuals, weight reduction is recommended for	
	reducing the risk of stroke.	
Smoking	Smoking cessation is recommended due to the high correlation	
	between smoking and both ischemic stroke and SAH.	
Aspirin	Aspirin therapy is not recommended for primary prevention of	
	stroke in the elderly, diabetics, or other high-risk groups.	
Alcohol	1. Avoid alcohol or limit consumption of ≤ 2 drinks per day for	
	men and ≤ 1 drink per day for non-pregnant women.	
Smoking	 kg/m2) individuals, weight reduction is recommended for reducing the risk of stroke. Smoking cessation is recommended due to the high correlation between smoking and both ischemic stroke and SAH. Aspirin therapy is not recommended for primary prevention or stroke in the elderly, diabetics, or other high-risk groups. 1. Avoid alcohol or limit consumption of ≤ 2 drinks per day for the stroke in the elderly for the stroke in the elderly. 	

	2. Alcohol is best avoided, a recent publication revealedconsumption of any amount of alcohol is associated with higherCVSD risk.
Public education	 Educate the community about stroke, stroke symptoms, risk factors, primary and secondary prevention, and recovery. Widespread education of patients and family members on healthy lifestyles, including smoking cessation, regular exercise, and reduction of obesity, cholesterol, excessive intake of salt, dietary fat, and alcohol, and other relevant risk factors.
Digital health	 Utilisation of digital health apps (e.g. EMPOWER-SUSTAIN in Malaysia) in conjunction with support by healthcare providers to maximise its effectiveness in patients' self-management. Develop user-friendly and effective e-health systems for rural people, and at the same time ensure security and privacy of the patients are properly maintained. Establish more ICT infrastructure and make the internet available and affordable in rural areas.

HYPERACUTE STROKE

Reviewer: Sing Keat Wong

Goals

1. To increase stroke awareness among the public and health providers in differentiating stroke and stroke mimics.

2. Fast access to CT brain plain (stroke pathway with or without pre-hospital notification) to differentiate intracerebral haemorrhage from ischemic stroke, the consensus as per Ischemic Stroke Management Clinical Practice Guideline 2020, CT angiogram (Carotid to Circle of Willis) is recommended with or without prior advanced neuroimaging i.e. CT perfusion and MRI brain.

3. To provide acute stroke therapies as per evidence-based principles.

4. Administration of IVT in a timely, safe manner after considering indications/ contraindications and risks versus benefits.

5. To reduce the morbidity and mortality of acute stroke while increasing the proportion with minimal disability.

6. To provide rapid access (including emergency transport) for all patients with acute stroke to an acute stroke-ready hospital (district hospital) and, wherever possible, to primary or comprehensive stroke centres.

Recommendations

1. Adequate training to recognize stroke, good clinical examination skills and interpret hyperacute vascular imaging.

2. Device clear interhospital transfer workflows and protocols to facilitate the transfer of patients to stroke centres.

3. Intensify collaborative efforts and communications between the pre-hospital service team and the hospital's stroke team.

Within 3 h - Age	For otherwise medically eligible patients ≥ 18 y of age, IV
	alteplase administration is equally recommended for patients
	\leq 80 and >80 years of age.
Within 3 h -	IV alteplase is indicated within 3 h from symptom onset of
Severe stroke	ischemic stroke despite increased risk of hemorrhagic
	transformation.
Within 3-4.5 h -	IV alteplase may be reasonable for patients who can be treated
Mild disabling	within 3 and 4.5 h of ischemic stroke onset or last known well.
stroke	
3-4.5 h -Age	For patients >80 years old, IV alteplase is safe and can be as
	effective as in younger populations.
3-4.5 h - Early	IV alteplase is reasonable for patients who present with
improvement in	moderate-severe ischemic stroke and demonstrate early
symptoms	improvement but remain moderately impaired and potentially
	disabled in the judgement of the physician.
3-4.5 h - Pre-	For patients with preexisting disability (mRS score >=2), the
existing	decision to thrombolysis should take into account quality of life,
disability	social support, place of residence, need for a caregiver, patient's

Timeline	based	eligibility	criteria	for	thrombo	lvsis ((AHA)
1 1111011110	ousea	cing sound	er reer ra			-y 515 (

	and family's preference and goals of care as they are associated with less neurological improvement and higher mortality.
3-4.5 h - Severe	The benefit of IV alteplase for patients with very severe stroke
stroke	symptoms (NIHSS score >25) is uncertain.
Wake-up and	IV alteplase can be given if:
unknown time of	a) DWI-FLAIR mismatch-presence of ischemic parenchymal
onset	brain lesion on MRI diffusion-weighted imaging but no
	corresponding hyperintensity on FLAIR (WAKE-UP Trial)
	b) Perfusion lesion-ischemic core mismatch – a ratio of >1.2
	between the volume of hypoperfusion and the volume of the
	ischemic core with the absolute difference in volume >10mls and
	ischemic core volume of <70mls (EXTEND trial- 4.5-9 hours or
	wake up stroke).

Other indications

Extracranial	IV alteplase in AIS known or suspected to be associated with
cervical arterial	extracranial cervical arterial dissection is reasonably safe
dissection	within 4.5 hours and probably recommended.
Intracranial arterial	IV alteplase benefits and bleeding risk in AIS known or
dissection	suspected to be associated with intracranial arterial dissection
	remain unknown, uncertain and not well established.
Unruptured	For AIS patients who are known to harbour:

intracranial	a) small or moderate-sized (<10mm) unruptured and
aneurysm	unsecured intracranial aneurysm - Administration of IV
	alteplase is reasonable and probably recommended.
	b) giant unruptured, unsecured intracranial aneurysm-
	Benefits and risk of IV alteplase are not well established.
Cerebral	In otherwise eligible patients who have CMBs demonstrated
microbleeds	on MRI of:
(CMBs)	a) a small number (1-10) of CMBs - administration of IV
	alteplase is reasonable.
	b) high burden of CMBs (>10)- the benefits of IV alteplase
	are uncertain.
Extra-axial	IV alteplase is probably recommended.
intracranial	
neoplasms	
Acute MI	For patients presenting with concurrent AIS and acute MI,
	treatment with IV alteplase at the dose appropriate for
	cerebral ischemia, followed by percutaneous coronary
	angioplasty and stenting if indicated, is reasonable.
Recent MI	1. For AIS patients with a history of recent MI within the last
	3 months, IV alteplase is reasonable in: i) NSTEMI/UA ii)
	STEMI involving the right or inferior myocardium;
	2. IV alteplase may be reasonable for STEMI involving the
	left anterior myocardium.

Left atrial or	IV alteplase may be reasonable for patients with major AIS		
ventricular	but it is of uncertain net benefit in patients with moderate AIS		
thrombus	likely to produce mild disability.		
Systemic	IV alteplase may be beneficial provided there are no		
malignancy with	coagulation abnormalities, recent surgery or systemic		
life expectancy > 6	bleeding.		
months			
Pregnancy	1. IV alteplase may be considered in pregnancy when the		
	benefits of treating moderate-severe stroke outweigh the		
	increased risks of uterine bleeding.		
	2. The safety and efficacy of IV alteplase in the early		
	postpartum period (<14 days after delivery) have not been		
	well established.		
Vaginal bleeding	In the presence of recent or active vaginal bleeding causing		
	clinically significant anaemia, emergency consultation with a		
	gynaecologist is probably indicated before a decision on IV		
	alteplase is made.		
Stroke mimics	IV alteplase is probably preferred over delaying treatment to		
	pursue additional diagnostic studies in stroke mimics.		

MECHANICAL THROMBECTOMY (MT) FOR ACUTE ISCHEMIC STROKE Reviwer: Hamidon Basri

Goals

1. Rapid acquisition of CTA in hyperacute settings to identify large vessel occlusion, assess collateral status to restore arrested blood flow in the affected vascular territory and salvage the ischemic brain tissue.

2. Successful recanalization as indicated by complete or greater than 50% filling of the distal branches in the expected territory (TICI 3), if achievable with reasonable safety.

3. Better understanding of vascular anatomy and clot composition.

4. Further improvements in the device and techniques used in thrombectomy.

Time and imaging based eligibility criteria for mechanical thrombectomy: Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): report of the SNIS)

0-6 h from onset	1. Thrombectomy should be offered if CT / MRI DWI ASPECTS
	\geq 6.
	2. Thrombectomy may be reasonable for AIS patients with a
	large core infarct volume such as CT/MRI DWI ASPECTS < 6.
6-24 h from onset	1. Thrombectomy is recommended in selected patients with AIS
	who have LVO in the anterior circulation and meet advanced
	MRI DWI or CTP imaging criteria for DAWN or DEFUSE 3.
	2. Thrombectomy may be considered in selected patients with
	anterior circulation AIS who do not meet imaging criteria for

DAWN and DEFUSE 3 but otherwise have a 'favourable'
imaging profile such as CT ASPECTS of 6-10, MRI DWI
ASPECTS of 6-10, moderate-to-good collateral status on
mCTA, or small (<70mL) core infarct on advanced MRI DWI-
PWI or CTP imaging.

Location of LVO (Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): report of the SNIS 2018)

Location	1. Thrombectomy is indicated in patients with occlusions of
	the ICA (including intracranial, cervical segments or tandem
	occlusion) and M1/M2 MCA.
	2. The benefit of thrombectomy in more distal segments, such
	as MCA M3 or anterior cerebral artery is unclear and should
	be considered on a case-by-case basis.

Clinical profile

Stroke severity	1. Thrombectomy is indicated in patients with anterior
	circulation ELVO with an NIHSS score of ≥ 6 .
	2. Thrombectomy may be considered in patients with
	anterior circulation AIS and NIHSS score <6 when
	associated with disabling symptoms.

Age and baseline functional level

Age & baseline	1. Age >80 years should not be used as a contraindication for
mRS score	thrombectomy.
	2. The benefit of thrombectomy in patients with baseline
	mRS score >1 is unknown.

MANAGEMENT OF TANDEM OCCLUSIONS IN ACUTE ISCHEMIC STROKE

Reviewer: Hamidon Basri

Endovascular Therapy of Anterior Circulation Tandem Occlusions / Management of tandem occlusions in acute ischemic stroke – intracranial versus extracranial first and extracranial stenting versus angioplasty alone: a systematic review and meta-analysis/ Tandem Lesions in Anterior Circulation Stroke Analysis of the German Stroke Registry–Endovascular Treatment

Introduction

Tandem occlusion involving concurrent occlusion of cervical ICA and intracranial large vessel occlusion (LVO) of either the intracranial ICA and/or proximal middle cerebral artery (MCA) showed poor response to IV thrombolysis alone.

Recommendation:

The treatment of cervical ICA during EVT is reasonable (level IIb evidence) and is associated with higher odds of favourable functional outcomes compared with medical therapy alone.

Intracranial versus Extracranial approach

It remains unclear if intracranial or extracranial lesions should be treated first. Treatment of the intracranial first approach resulted in reduced time to recanalization, whereas the extracranial first approach can improve collateralization while the intracranial thrombectomy is being performed.

Recommendations:

No consensus exists regarding an extracranial first versus intracranial first approach up to date and no single approach can be advocated for consistently.

Extracranial stenting versus angioplasty approach

It remains unclear if extracranial lesions are best managed with stenting or angioplasty only at the time of initial treatment. The carotid stenting approach resulted in a definitive treatment at the time of the initial procedure but increases the risk of periprocedural haemorrhage as compared to angioplasty.

Recommendations:

1. Treatment of acute cervical ICA with stenting is associated with higher odds of successful reperfusion and favourable outcome compared with no cervical ICA stenting.

2. Actiology of the cervical ICA lesion should be considered while planning EVT for acute ischemic stroke due to tandem occlusion as cervical ICA stenting was associated with favourable outcome in the atherosclerosis group but not in the dissection group.

3. Careful patient selection for cervical ICA stenting should be taken as stronger benefit is associated with lower NIHSS at admission.

4. It is important to weigh up the benefits of cervical ICA stenting against the potential risk of hemorrhagic complications from early antiplatelet agent administration, especially after intravenous thrombolysis. In fact, there was no difference in the rate of sICH and PH2 between the stent and no-stent groups; the better functional outcome was seen in the stent group.

5. Conservative treatment should be considered first in patients with dissection and cervical ICA stenting should be reserved for selected cases.

Antiplatelets management before and after emergent carotid artery stenting (CAS) for extra-cranial internal carotid artery (EC-ICA) occlusion in the setting of acute ischemic stroke

Before CAS	(Antiplatelet Therapy During Emergent Extracranial Internal
	Carotid Artery Stenting: Comparison of Three Intravenous
	Antiplatelet Perioperative Strategies) / Antiplatelet Therapy
	During Emergent Extracranial Internal Carotid Artery Stenting:
	Comparison of Three Intravenous Antiplatelet Perioperative
	Strategies
	1. No specific recommendation exists with respect to the
	antiplatelet regimen for EC-ICA emergent stenting, due to the
	lack of direct comparison between different antiplatelet
	strategies.
	2. In the acute phase administration of IV aspirin, if available,
	or IV glycoprotein IIb/IIIa receptor antagonist, such as
	abciximab, would be possible.
	3. However, the ideal medical regimen in CAS for acute stroke
	is not known, and it must be borne in mind that aggressive
	anticoagulation, especially in combination with thrombolytics,
	may increase the risk of ICH.
	3. Examples of intravenous antiplatelets used: aspirin,
	clopidogrel, Eptifibatide, tirofiban, Abciximab, Cangrelor.
After CAS	post stenting: Postprocedural Antiplatelet Treatment after

Emergent Carotid Stenting in Tandem Lesions Stroke /
Mechanical thrombectomy in tandem occlusion: procedural
considerations and clinical results /
Dual antiplatelet therapy after carotid artery stenting: trends and
outcomes in a large national database
1. After emergency stent implantation, antiplatelet medication is
necessary to prevent acute stent thrombosis.
2. Secondary prophylaxis with DAPT daily is superior to aspirin
monotherapy or aspirin plus heparin.
3. A multi-speciality consensus statement recommends at least 4
weeks of post-CAS dAPT followed by lifelong treatment with
SAPT.
4. In Malaysia settings, DAPT (aspirin-clopidogrel) is for 3
months, then SAPT (aspirin/clopidogrel) lifelong is practised.
5. However, the potential benefit of prolonging DAPT
concerning ischemic complications must be balanced with the
corresponding increased risk of haemorrhage.

Technique European Stroke Organisation (ESO)- European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke

Statements	Evidence/Suggestions
Comparison of MT using direct	1. There is currently no evidence that
aspiration compared with a stent	contact aspiration alone improves

retriever for adults with LVO related	functional outcomes compared with
acute ischemic stroke	BMM in patients undergoing MT.
	2. There is currently no evidence that
	contact aspiration alone increases the
	rate of reperfusion over thrombectomy
	using a stent retriever.
	3. Stent retriever is preferred as
	compared to contact aspiration alone for
	MT in patients with acute ischemic
	stroke.
	4. ADAPT may be used as standard first
	line treatment, followed by stent
	retriever thrombectomy as rescue
	therapy if needed.

Conclusions

1. Mechanical thrombectomy for anterior circulation stroke due to proven proximal LAO within 6 hours of stroke onset is safe and highly effective.

2. The overall rate of independent functional outcome (mRS 0-2) at 90 days is about 20% greater with MT than with best medical therapy alone (which in most cases included IVT), and about half of the patients achieve very good outcomes after MT.

3. Favourable outcomes from MT in most patients are strongly time-dependent ('time is brain'), and best results are achieved when an early ischaemic brain injury is limited (for example, ASPECTS score \geq 5).

4. If good recanalisation is achieved within 4.5 hours, the absolute rate of good

functional outcome exceeds 60%.

5. MT is highly likely to be cost-effective or even cost-dominant over a lifetime analysis.

TENECTEPLASE (TNK) IN HYPERACUTE STROKE

Reviewer: Zhe Kang Law

1. TNK is more fibrin specific, with a longer half-life of more than > 90-130 minutes, better reperfusion rate, lesser bleeding rates and easier to administer (single bolus in 5 seconds).

2. The optimal dose of TNK is 0.25m/kg. At this dose, it has a similar safety profile and is non-inferior in efficacy compared to Alteplase.

3. TNK reduces time from imaging to thrombolysis by 9 minutes; in CSC settings by 12 minutes; in drip-and-ship settings, Tenecteplase reduces IVT to puncture time by 11 minutes and improves functional dependence (TETRIS registry).

4. TNK is more cost-effective than alteplase.

Indications	Recommendations
TNK in standard time	TNK is an alternative to alteplase for all patients presenting
window (4.5 hours	with acute ischaemic stroke who meet standard criteria for
from definite onset)	thrombolysis. AcT trial which compared Tenecteplase
	0.25mg/kg vs Alteplase 0.9mg/kg showed non-inferiority in
	primary outcome defined as mRS 0-1 at 90-120 days.
TNK for wake-up	The benefits of TNK beyond the standard time window are
stroke/unsure onset	uncertain. Several trials are ongoing to supplement data in its
stroke/ extended time	use < 4.5 hours and between 4.5-24 hours. TWIST trial
window stroke	which compared Tenecteplase 0.25mg/kg versus no IVT use
	in less than 4.5 hours from wake up, NIHSS \geq 3 or aphasia,

	using only non-contrasted CT assessment, showed that
	tenecteplase did not improve outcome. The current
	consensus did not support TNK utilisation in this group.
TNK in minor stroke	TNK is a reasonable alternative for minor strokes. NOR-
	TEST trial compared Tenecteplase 0.4mg/kg vs Alteplase
	0.9mg/kg showed TNK was not superior to alteplase in
	improving functional outcome. However, taking into
	account results from other trials (including NORTEST-2A
	which showed harm of TNK at 0.4mg/kg), the recommended
	dose for TNK is 0.25mg/kg with a max of 25mg. TNK at a
	dose of 0.4mg/kg is not recommended.
TNK in LVO	Tenecteplase is superior as bridging therapy when given \leq
(Please refer CPG	4.5 hours. EXTEND-IA TNK which compared Tenecteplase
Management of	0.25mg/kg vs alteplase before thrombectomy showed
Ischemic Stroke 3rd	superiority of Tenecteplase with a reperfusion rate of 22% vs
edition)	10% and better functional outcome in patients with LVO.
TNK in BAO	TNK may be associated with an increased rate of reperfusion
	in comparison with alteplase before EVT in BAO.
	Randomised controlled trials to compare TNK with alteplase
	in patients with BAO are warranted. (Pooled analysis of
	BATMAN registry and EXTEND-IA TNK demonstrated a
	reperfusion rate of 26% vs 7% in Alteplase with no effect on
	the functional outcome). In the setting of clear onset stroke

	within 4.5 hours from the onset, TNK 0.25mg/kg maximum
	dose of 25mg may be considered as a reperfusion lytic
	treatment.
TNK in elderly	Tenecteplase 0.25 mg/kg given before endovascular therapy
	in patients >80 years old with large vessel occlusion stroke
	is associated with better functional outcomes at 90 days and
	reduced mortality when compared to tenecteplase 0.40
	mg/kg or alteplase 0.90 mg/kg. (Class II evidence-
	EXTEND-IA pooled analysis).

1 vial of Tenecteplase (50mg)

Body weight	Dose (0.25mg/kg)	TNK dilution 10mls =
		50mg
<60 kg	15.0 mg	3.0mls
60-70 kg	17.5 mg	3.5mls
70-80 kg	20.0 mg	4.0mls
80-90 kg	22.5mg	4.5mls
>90 kg	25mg.	5mls

*clinician should realise that the max dose of TNK in ischaemic stroke is 25mg,

therefore only half the vial of a 50mg TNK vial will be used.

BASILAR STROKE

Reviwer: Presaad Pillai

Issues

1. BASICS (2021) and BEST (2020) endovascular trials showed directional benefit in the primary outcome (mRS≤3 at 90 days) between endovascular treatment (EVT) versus best medical management (BMM) for basilar artery occlusion (BAO), however, it did not reach statistical significance. Symptomatic intracranial haemorrhage rates and mortality were comparable between the 2 treatment groups in both trials.

Latest updates

1. ATTENTION and BAOCHE trials which were published in 2022 showed overwhelmingly positive results favouring EVT in BAO.

2. ATTENTION recruited patients presenting within 12 hours of stroke onset whereas BAOCHE enrolled patients presenting within the 6 to 24-hour time window.

3. In terms of the primary outcome, a good functional outcome which was defined as mRS 0-3 at 90 days in both trials, was achieved by 46% of patients in the intervention group versus 23% in the control group (adjusted rate ratio, 2.06; 95% confidence interval [CI], 1.46 to 2.91, P<0.001) in ATTENTION. BAOCHE demonstrated 46% good functional outcome in the intervention group compared to 24.3% in the control group (adjusted rate ratio, 1.81; 95% confidence interval [CI], 1.26 to 2.60; P<0.001). 4. ATTENTION showed a significant reduction in 90-day mortality rates in the thrombectomy group compared to the control (37% vs 55%, adjusted risk ratio, 0.66; 95% CI, 0.52 to 0.82) despite increased symptomatic intracranial haemorrhage (sICH) in the thrombectomy group (6% vs 0%). BAOCHE showed similar trends of increased

sICH and reduced 90-day mortality in the thrombectomy group however the reduction in 90-day mortality in the thrombectomy group compared to the control (31% vs 42%) did not reach statistical significance (adjusted risk ratio, 0.75; 95% CI, 0.54 to 1.04). 5. In the ordinal shift of mRS, the adjusted common odds ratio (aCOR) towards better outcomes with thrombectomy was 2.87 in the ATTENTION and 2.64 in BAOCHE. This was comparable to anterior circulation thrombectomy trials with aCOR of 2.49 in HERMES and 2.54 in AURORA for ordinal mRS shift for a better outcome.

Conclusion

1. ATTENTION and BAOCHE have demonstrated that EVT is the standard of care for patients with basilar artery occlusions presenting either in the early or late time window and these findings are comparable to anterior circulation trials.

2. EVT in BAO has higher rates of good functional outcome and overall ordinal shift in mRS as well as lower 90-day mortality rates despite an expected increase in sICH.

3. ATTENTION and BAOCHE trials were restricted to Han Chinese patients who had a higher rate of intracranial arterial atherosclerosis which then required more intracranial stenting. Therefore, we can assume that patient populations with lower rates of atherosclerosis disease may benefit more from EVT.

Areas of improvement/ research interest

1. Application of the latest evidence-based medicine with adjustment to Malaysia's local settings in the management of acute BAO.

2. To strive for robust multicenter registries with well-maintained records of both cases and controls so that large sample registries of worldwide calibre can be rapidly acquired for analysis.

ACUTE STROKE CARE (24HOURS-7DAYS)

Reviwer: Jiann Shayng Tay

Goals

1. Early acute stroke care (first 24-48 hours) is pertinent to prevent early neurological deterioration, optimise cerebral perfusion, maximise functional recovery, monitor for early complications and prevent recurrent events.

2. Setting up effective acute stroke units which allow a more accurate diagnosis to be reached, more appropriate investigation to be carried out, prevention of secondary complications, earlier intensive rehabilitation and individualised patient care.

3. Inpatient investigations should aim to discover the mechanisms of current stroke as the effectiveness of stroke prevention is closely related to the stroke mechanism.

4. Good history and physical examinations to guide inpatient investigations.

5. Effective, supported discharge plan to prevent recurrence of stroke.

Specific interventions

Post IVT patients ideally should be managed in the Acute Stroke Unit (ASU).

Care aspects	Rationale	
Managing team	1. An organised inpatient stroke unit care was characterised by a	
	multidisciplinary team consisting of staff with a special interest in	
	stroke \pm rehabilitation, routine involvement of carers in the	
	rehabilitation process in addition to the regular running of education	
	and training programmes for staff.	
	2. ASU should aim to provide standardised assessment, early	
	2. ASU should aim to provide standardised assessment, early	

	management protocol and early active rehabilitation for every inpatient.
NIHSS monitoring	 For IVT patients, it is recommended to have intensive NIHSS monitoring (q 15 min for 2 hours, q 30 min for 6 hours and hourly for 16 hours). For non-IVT patients, less intensive NIHSS monitoring is required, however, care should be taken if NIHSS increase by 4 points from baseline.
BP	 For IVT patients, a strict BP target is reasonable (<180/105mmHg) but no lower than 130-140mmHg for the first 72 hours. For non-IVT patients, permissible hypertension is reasonable for the first 24-48 hours (< 220/120mmHg).
Blood glucose	Aim to achieve blood glucose levels in the range of 140-180mg/dl (7.8-10mmol/l) and avoid blood glucose < 60mg/dl (3.3mmol/l) during the first 24 hours after AIS.
VTE prophylaxis	 Intermittent pneumatic compression is an effective and inexpensive method. Anticoagulation with unfractionated heparin (UFH) or low molecular weight heparin (LMWH) or heparinoid should be considered if the benefits outweigh the risks. Maintain adequate hydration Aim for early mobilisation.

Swallowing assessment	A bedside water swallowing test is a useful screening test and will dictate the need for a formal swallowing assessment referral.
Brain imaging	 Emergent CT scan and discontinuation of alteplase infusion are warranted if the patient develops a severe headache, acute hypertension, nausea, or vomiting or has a worsening neurological examination. CT or MRI scan 24 hours after IV alteplase should be obtained before starting anticoagulants or antiplatelet agents.
Others	 Adequate hydration to maintain cerebral perfusion. Delay placement of nasogastric tubes, indwelling bladder catheters, or intra-arterial pressure catheters if the patient can be safely managed without them (at least after 24 hours).
Management of post stroke complications	Infection, pressure sores, delirium, and post-stroke depression

Evaluations of AIS patients to prevent recurrent stroke: (AHA/ASA)

Investigations	Justifications
Brain Imaging	MRI is reasonable to guide the selection of secondary stroke prevention treatments in conditions: a) patients with carotid stenosis who are potential candidates for carotid revascularization in whom NCCT does not allow accurate

	 localization. b) patients with PFO who are potential candidates for mechanical closure. c) patients with ischemic stroke and a treatment plan that includes anticoagulants to assess for haemorrhagic transformation and final infarct size.
Vascular imaging	MRA/CTA neck/brain to screen for: a) stenosis in patients with symptomatic anterior circulation cerebral infarction /TIA who are candidates for revascularization b) arterial dissection c) moya-moya or other vasculopathies
Transcranial Doppler (TCD)	TCD with embolus detection might be reasonable to screen for right-to-left shunt in ischemic stroke/TIA patients contemplating
Doppier (TCD)	PFO closure.
Cardiac evaluation	 In patients with acute ischemic stroke/TIA and without previously known AF, monitoring for AF is recommended using a short-term ECG recording for at least the first 24 hours, followed by continuous ECG monitoring for at least 72 hours whenever possible. In patients with cryptogenic stroke, long-term rhythm monitoring with mobile cardiac outpatient telemetry or implantable loop recorder is reasonable to detect paroxysmal AF. Transthoracic Echocardiography (TTE) is useful to diagnose

	PFO, intracardiac thrombus, myxoma, and endocarditis for all
	stroke patients.
	4. Transesophageal echo (TOE) with Valsalva manoeuvre on
	agitated Gelofusin microbubble test +/- transcranial doppler is the
	gold standard to confirm PFO.
Vascular risk	Complete blood count, coagulation profile, creatinine, fasting
factors	plasma glucose, HbA1c, fasting lipid profile are recommended to
identifications	assess risk factors for stroke.
Thrombophilia	Testing for inherited thrombophilia in young stroke is of
screen	questionable clinical utility. The diagnostic yield is probably
	highest among young adults with cryptogenic stroke, prior
	miscarriages or thrombosis during pregnancy, and personal or
	family history of venous thrombosis.
Antiphospholipid	Routine testing is not recommended for patients with ischemic
screen	stroke who have no other manifestations of the antiphospholipid
	syndrome and who have an alternative explanation for their
	ischemic event such as atherosclerosis, carotid stenosis, or atrial
	fibrillation.
Hyperhomocystein	Routine screening for hyperhomocysteinemia among patients with
-emia	a recent ischemic stroke is not indicated.
Genetic testing	Reasonable to be performed in patients with cryptogenic stroke.
(Notch 3/HTRA	

1/MTHFR 677C-T	
gene)	
Vasculitis panel,	Reasonable to be performed in patients with cryptogenic stroke to
markers of	diagnose CNS vasculitis.
systemic	
inflammation	
Biohazard and	Reasonable to be performed in patients with cryptogenic stroke.
drugs screen	
(cocaine/amphetam	
-ines)	

INTRACEREBRAL HAEMORRHAGE (ICH)

Reviewer: Zhe Kang Law

Introduction

Hematoma expansion is devastating. TICH-2 studies showed that it is associated with worse outcomes in terms of mRS shift analysis OR 2.49 (p<0.0001), death at day 7 OR 5.99 (p< 0.0001), death at day 90 OR 2.58 (p < 0.0001), length of stay OR 0.72 (p < 0.0001) and also worse cognition, mood and quality of life scores.

Specific interventions (2022 AHA/ASA guidelines for management of patients with spontaneous intracerebral haemorrhage)

Recommendations	Justifications
Blood pressure control	 Blood pressure lowering within 2 hours of ICH onset and aim to reach the target within 1 hour. Mild-moderate ICH with presenting SBP 150-220 mmHg, acute lowering of SBP to a target of 140 mmHg to maintain between 130-150 mmHg is reasonable. Acute lowering of SBP to < 130mmHg is potentially harmful. Large-severe ICH or those requiring surgical decompression, the safety and efficacy of intensive BP lowering are not well established.
Patients on antiplatelet therapy	1. Consider platelet transfusion for patients with spontaneous ICH on antiplatelet(aspirin) who need emergent neurosurgery interventions. Platelet transfusions

	are potentially harmful and should not be administered ifno neurosurgery interventions are needed.2. The effectiveness of desmopressin with or withoutplatelet transfusions to reduce hematoma expansion inpatients with spontaneous ICH being treated withantiplatelet is uncertain.
Patients on Vitamin K	1. ICH and INR > 2: PCC is preferred over FFP.
antagonists (warfarin)	2. ICH and INR 1.3-1.9: PCC is reasonable.
	3. Intravenous Vitamin K should be given after the
	replacement of the coagulation factor (PCC or others) to
	prevent an increase in INR later.
Patients on UFH or	Intravenous protamine is reasonable.
LMWH	
Patients on other	1. Direct FXa inhibitors: Andexanet alpha as the reversal,
anticoagulants eg	PCC may be considered.
Rivaroxaban,	2. Dabigatran: Idarucizumab as the reversal, PCC may be
Dabigatran, Apixaban	considered.

Recommendations for General Hemostatic Treatments

1. The effectiveness of recombinant factor VIIa to improve functional outcomes in patients with spontaneous ICH (with or without the spot sign) is unclear.

2. The effectiveness of tranexamic acid in improving the functional outcome of patients with spontaneous ICH (with or without the spot sign, black hole sign or blend sign) is

not well established.

SECONDARY STROKE PREVENTION

Reviewers: Wan Chung Law, Abdul Hanif Khan Yusof Khan

Goals

1. Early initiation of treatment (within 24 hours) after TIA/minor stroke to advert the risk of early stroke recurrence. (EXPRESS study)

2. Multimodal treatment involves anti-thrombotic (SAPT/DAPT/OAC), blood pressure control, cholesterol-lowering drug, diabetic control, in addition to exercise and lifestyle changes is crucial.

Components	Recommendations
Hypertension	 A BP goal of <130/80 mm Hg is recommended for most patients to reduce the risk of recurrent stroke and vascular events. A higher threshold may be justified in the frail/ elderly/limited life expectancy populations. Antihypertensive treatment with a thiazide diuretic, angiotensin- converting enzyme inhibitor, or angiotensin II receptor blocker is useful for lowering BP and reducing recurrent stroke risk.
Hyperlipidemia	 Lipid-lowering therapy with a statin and also ezetimibe, if needed, to attain an LDL-C of 1.8mmol/L (<70 mg/dL) is recommended to reduce the risk of major cardiovascular events in patients with ischemic stroke or TIA and atherosclerotic disease (intracranial, carotid, aortic, or coronary). PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitor can be considered for patients with ischemic stroke who still have an LDL-C >

Specific interventions (AHA/ASA)

r	
	1.8 mmol/L (>70 mg/dL) despite taking maximally tolerated statin and
	ezetimibe therapy who have a very high risk to prevent ASCVD events.
Glucose	A goal of HbA1c \leq 7% is recommended for most diabetic patients with an
	ischemic stroke/TIA, especially those <65years old and without life-
	limiting comorbidities to reduce risk for microvascular complications.
Non-cardioembolic	1. Single antiplatelet (SAPT) is indicated for secondary stroke prevention
stroke	in most patients with non-cardioembolic ischemic stroke or TIA.
	2. In patients presenting minor non-cardioembolic stroke (NIHSS \leq 3) or
	high-risk TIA (ABCD \geq 4) who did not receive IV alteplase, treatment
	with dual antiplatelet (DAPT) started within 24 hours of symptoms onset
	and continued for 21 days is effective in reducing the risk of recurrent
	ischemic stroke for a period of up to 90 days from symptom onset.
	3. Cilostazol may be an alternative for patients with diffuse fragile small
	vessel disease and therefore at a higher risk of cerebral haemorrhage.
	(PICASSO, CSPS 2 trial)
	4. Ticagrelor might be preferred to clopidogrel for secondary stroke
	prevention for patients with minor ischemic stroke or TIA who were
	carriers of CYP2C19 loss -of -function alleles. (Ticagrelor versus
	Clopidogrel in CYP2C19 loss-of-function Carriers with Stroke or TIA. N
	Engl J Med. 2021 Dec 30;385(27):2520-2530. doi:
	10.1056/NEJMoa2111749. Epub 2021 Oct 28. PMID: 34708996.)
Atrial fibrillation and	1. In AF patients with an ischemic stroke/TIA, long term secondary
antithrombotics	prevention of stroke using OAC is recommended if there is no strict

contraindication to OAC use, with a preference for NOACs over VKAs in NOAC-eligible patients.

2. HAS-BLED score has no bearing on the indication or contraindication of prescribing oral anticoagulants (OAC). It served as a reminder to practitioners to be judicious of the bleeding events.

3. Adequate dosing of NOAC can reduce the risk of stroke/systemic embolism, hospitalisation and death without a significant increase in major bleeding risk.

4. Algorithm for breakthrough ischemic stroke in patients while on OAC: a) rule out non-adherence b) rule out competing mechanisms c) rule out thrombus in the left atrial appendage (LAA) and to consider LAA occlusion if present d) if there is no thrombus in LAA, switching to a DOAC with a different mechanism might be reasonable in addition to investigate for other vascular risk factors.

5. The timing of initiation of anticoagulation for non-bleeding stroke as per is at 1-3-6-12 days after TIA, mild (NIHSS <8), moderate (NIHSS 8-16) and severe stroke (NIHSS >16).

6. For bleeding stroke (for example hemorrhagic transformation with concurrent multifocal infarcts and multiple vascular risk factors or cerebral microbleeds /cerebral amyloid angiopathy), the timing of initiation of OACs is case-by-case basis and decision should be guided by repeat CT brain and advanced vascular imaging (MRI/MRA/Circle of Willis).

7. A strict BP aim of < 120/80mmHg is recommended before initiation of OAC.

Cardiomyopathy	1. In patients with ischemic stroke /TIA and left atrial appendage thrombus
	with concomitant cardiomyopathy (ischaemic, non-ischaemic, or
	restrictive) and LV dysfunction, anticoagulant therapy with warfarin is
	recommended for at least 3 months to reduce the risk of recurrent stroke or
	TIA.
	2. In patients with ischemic stroke or TIA in sinus rhythm with ischaemic
	or non-ischaemic cardiomyopathy and reduced EF without evidence of left
	atrial or LV thrombus, the effectiveness of anticoagulation compared with
	antiplatelet therapy is uncertain.
	3, In patients with stroke or TIA and new LV thrombus (<3 months), the
	safety of direct oral anticoagulants to reduce the risk of recurrent stroke is
	uncertain.
Extracranial large	1. CEA is recommended in patients with symptomatic 70-99% carotid
artery atherosclerosis	stenoses.
(ESC 2017)	2. CEA should be considered in patients with symptomatic 50-69% carotid
	stenoses.
	3. Revascularization of 50-99% stenoses performed within 14 days after
	the index event is reasonable.
	4. CAS should be considered for patients with symptomatic 50-99%
	carotid stenoses that are at high risk for CEA (adverse anatomical features
	or medical comorbidities).
Intracranial large	1. In patients with an ischemic stroke or TIA due to 50-99% stenosis of a
artery atherosclerosis	major intracranial artery, aspirin is preferred compared to oral
	anticoagulation. (WASID)

(ESO ICAD	2. In patients with an ischemic stroke or TIA due to severe stenosis (70-
2022/AAN stroke	99%) of a major intracranial artery, dual antiplatelet therapy with aspirin
prevention in symp	and clopidogrel for a treatment duration of up to 90 days is reasonable.
ICAD 2022)	(SAMPRISS)
	3. High-intensity statin therapy to achieve a goal of LDL < 1.8 mmol/L
	(<70 mg/dL), long-term BP target of <140/ 90 mm Hg in clinically stable
	patients with sICAS, moderate physical activity, and treatment of other
	modifiable vascular risk factors are recommended to reduce the risk of
	recurrent stroke and vascular events.
	4. In patients with a stroke/TIA due to moderate stenosis (50-69%)of a
	major intracranial artery, angioplasty or stenting is associated with higher
	peri-procedural risk and is thus, not recommended.
	5. In patients with severe stenosis (70-99%) of a major intracranial artery,
	endovascular therapy with intracranial angioplasty and or stenting is not
	recommended as a treatment of first choice.
Covert cerebral small	1. Use of antihypertensive therapy in ccSVD patients with hypertension
vessel disease	$(BP \ge 140/90 \text{ mmHg})$ is recommended.
(ccSVD) (ESO	2. Lipid-lowering with a statin can be considered in ccSVD patients at
ccSVD 2021)	high risk of vascular events as primary prevention.
	3. Healthy lifestyle interventions are recommended as primary prevention
	for vascular events.
	4. Use of glucose-lowering therapies in diabetic patients who may have
	ccSVD is recommended. However, this treatment is not recommended in
	non-diabetic patients.

	5. Use of antiplatelet therapy in ccSVD patients with no other indications
	for this treatment and use of antidementia drugs are not recommended.
Patent foramen ovale	1. In patients with a non-lacunar ischemic stroke of undetermined cause
(PFO)	despite a thorough evaluation and a PFO with high-risk anatomic
(ASA 2021)	features, it is reasonable to pursue PFO closure over antiplatelet therapy
	alone for preventing recurrent stroke.
	2. In patients with ischemic stroke with concomitant presence of ASD and
	PFO, closure of both anatomical defects is recommended.
	3. In patients with a non-lacunar ischemic stroke of undetermined cause
	and a PFO, the decision for PFO closure versus medical management
	should be made jointly by the patient, cardiologist, and neurologist.
Embolic stroke if	For embolic strokes of an undetermined source (ESUS), it is recommended
uncertain source	to give SAPT. OAC and ticagrelor have not shown benefits based on the
(ESUS)	latest studies.
(ASA 2021)	
Lifestyle	1. Smoking cessation
modifications	2. Increase physical activity
	3. Weight loss
	4. Diet which limits food high in saturated fat/cholesterol, sweetened food
	and red, processed meats
	5. Diet which emphasises consumption of more fruits, vegetables,
	legumes, whole grains and fat-free/low-fat dairy

STROKE IN GERIATRIC POPULATIONS

Reviewer: Wee Koi Cheah

Goals

1. To recognize that stroke could present differently in the elderly.

2. To improve functional outcomes and reduce stroke-related complications in elderly patients.

3. To redefine the treatment of stroke in elderly patients.

4. Seamless stroke care for elderly patients in the community

5. To acknowledge the importance of advanced care planning in post-stroke elderly patients.

Issues

1. Non-specific symptoms such as delirium, falls, numbness, speech and visual disturbance, and unusual pain /headache, as atypical presentations of stroke in the elderly.

2. Late stroke presentation occurred frequently in the elderly due to numerous reasons such as assuming symptoms are part of ageing, having low expectancy for good health, better symptom tolerability and fear of seeking medical attention.

3. Geriatric patients were often excluded or under-represented in studies of acute stroke treatment-related complications and treatment efficacy (either IVT or mechanical thrombectomy or both).

4. Stroke prevention in the elderly is complex not only because there is not many randomised controlled trials (RCTs) involving this age group that can provide treatment evidence, but also because the stroke etiologies changes with ageing and there is a large

body of evidence from geriatric medicine that potentially conflicts with usual stroke preventative measures (eg data on frailty, polypharmacy, and falls)

5. The elderly post-stroke patients are more likely to develop post-stroke complications i.e. physical and cognitive impairment, urinary or faecal incontinence, bone fractures, infection, joint contractures, pressure sores and psychological disturbances.

6. Rehabilitation efforts as part of post-stroke care in elderly patients are often inadequate or started late.

7. Barriers to establishing an integrated multidisciplinary approach in elderly care are namely limited trained personnel, lack of continuity of care and lack of medications at community hospitals and clinics.

8. Advanced care planning is not often discussed as part of stroke care in Malaysia. Decisions on life-prolonging treatment are often made more difficult with communication difficulties, cognitive impairment and challenges with prognostication.

Interventions	Rationale
Acute stroke therapy	IVT and/or EVT should become the standard of care for geriatric patients as well. However, careful selection of eligible patients especially for mechanical thrombectomy by routine assessment of pre-stroke frailty may help with the decision-making.
Primary prevention	Treatment of hypertension, antithrombotic for AF, statin, and healthy lifestyles.

Specific interventions

Secondary prevention	1. Ischemic stroke: Blood pressure and cholesterol-
	lowering, antithrombotic for AF, carotid intervention and
	healthy lifestyle
	2. Hemorrhagic stroke: Blood pressure lowering, avoiding
	antithrombotic, healthy lifestyle
Elderly post-stroke	Components involved:
care	1. Identification and management of post-stroke cognitive
	impairment
	2. Recognition and management of bladder/bowel
	dysfunction
	3. Identification and management of post-stroke bone
	fragility
	4. Fall prevention and exercise
	5. Prevention of post-stroke infection, pressure sores and
	deep vein thrombosis (DVT)
	6. Pain and fatigue management
	7. Early supported discharge services which include home
	visits, family meetings and out-of-hospital rehabilitation
	8. Financial and societal support via non-government
	organisations (NGOs), private agencies and social welfare.
Stroke rehabilitation	Stroke rehabilitation should be commenced as soon as
	patients are medically stable, however, individualised
	clinical judgments are indicated in older patients and
	patients with intracerebral haemorrhage.

Medication review	Identify drugs that are no lower indicated, appropriate or
	align with goals of care. Examples of validated tools that
	can be used are Beers Criteria 2019 (American), STOPP
	(European), STOPP-Frail, and STOPP-Fall.
Advanced care	1. The discussion of advanced care planning needs to be
planning	established early at the diagnosis of stroke.
	2. It should aim to ascertain patients' wishes and
	preferences, communicate with them about the prognostic
	uncertainty, and engage carers throughout the process to
	remove any cognitive biases.
	3. An in-hospital Clinical Ethics Committee should be
	established to help to resolve certain conflicts of decision-
	making on advanced care planning for patients.
Family/carer	Family and carers should be actively involved in the whole
involvement	continuum of stroke care. For example, a shared decision
	between patient, family and health care providers is
	fundamental in ensuring the success of deprescribing and
	in setting realistic goals of care.

CEREBROVASCULAR DISEASE AND NEUROCOGNITIVE DISORDERS Reviewer: Kit Mun Tan

Issues

1. Early onset post-stroke dementia (PSD) results from a complex interplay between stroke lesion features and brain resilience. Chronic brain damage including WMH, MTLA and Alzheimer's disease pathology seen on magnetic resonance imaging (MRI) are associated with incident dementia after stroke/TIA.

2. Delayed-onset PSD is associated mainly with the presence of severe sporadic small vessel disease (WMH) and to a lesser extent with Alzheimer's disease pathology or recurrent stroke.

3. Post-stroke dementia is associated with higher mortality rates (from dementia itself or stroke-related mortality, more severe vascular disease and complications, less welltreated, poorer compliance to treatment), higher stroke recurrence and more impaired and dependent in activities of daily living.

4. The neurodegeneration profiles for South-East Asian populations might be different from Western populations with a study from the National Neuroscience Institute, Singapore showing that two-thirds (55.9 %) of the local population tested negative for Amyloid- β in cerebrospinal fluids (CSF). Notably, among these Amyloid negative cohorts, 40% had cerebrovascular diseases.

5. There is a higher prevalence of white matter lesions (WML) among South-East Asians.

6. Hypertension, hyperlipidemia, diabetes mellitus, smoking, higher body mass index (BMI) and carotid artery stenosis were significant risk factors for WML.

Goals

1. Better understanding of the underlying pathophysiology of post-stroke neurocognitive disorder and dementia in general.

2. Early detection of mild cognitive impairment (MCI) to prevent progression to dementia.

3. Timely initiation of pharmacological and non-pharmacological interventions.

Specific interventions: (ESO White Paper on cognitive impairment and cerebrovascular disease/ESO-EAN joint guidelines on post-stroke cognitive impairment)

Interventions	Rationale
Early symptoms	Three essential domains:
recognition from	1. Cognition (changes in vocabulary/grammar, errors at work)
clinical profile	2. Mood and behaviour (decreased motivation, emotional
	dysregulation, impulse control, social inappropriateness)
	3. Physical changes (slowness of gait, cautious gait, reduced
	grip strength).
Screening tools	1. Brief cognitive screening at the acute stroke onset should be
	performed as part of the neurological examination and
	contributes to the diagnosis of the acute condition in the
	emergency room; in the stroke unit, this can be complemented
	with language or hemineglect tests to facilitate early
	rehabilitation.
	2. Screening of cognition using MMSE can be considered in

	acute and post-acute stroke settings i.e. 3 to 6 months post-
	stroke.
	3. Screening of cognition using the MoCA can be considered in
	post-acute stroke settings.
	4. Initial full neuropsychological evaluation should only be
	conducted after some stabilisation was achieved (possibly as
	late as 6 months after a severe stroke).
CSF/Blood-based	1. No specific laboratory analysis or blood or cerebrospinal
biomarkers	fluid (CSF) biomarker is available yet for determining the exact
	vascular injury responsible for CI due to CVD.
	2. In patients with small vessel disease (SVD), CSF studies may
	help in differentiating inflammatory myelin disorders or
	exclude vasculitis. CSF protein examination can provide
	evidence of blood-brain barrier disruption (increased CSF
	albumin to blood albumin ratio).
	3. Analysis of CSF markers of cortical neuronal degeneration
	and amyloid pathology may help in detecting mixed aetiologies
	(eg AD is associated with reduced amyloid β 1-42; CAA is
	associated with increased phosphorylated-tau but lower
	amyloid β1-42).
Brain imaging	1. Brain MRI can be considered the gold standard for diagnosis
	of CI due to CVD.
	2. Baseline white matter hyperintensities (WMH) and lacunes
	(cavitated lesions) have been identified as independent

predictors of CI in SVD, not necessarily preceded by a history of stroke.
3. Infarct volume and location, in combination with WMH, microbleeds and atrophy (globally and medial temporal lobe), maybe the most important neuroimaging predictors of PSCI.
4. The predictors of minor and major CI after ischemic stroke and after intracerebral haemorrhage appear to be largely similar, with haemorrhagic stroke associated with an increased risk of PSCI compared with ischemic stroke.

Prevention	in	1. Comprehensive vascular risk factor management including
patients with	CI	blood pressure reduction, antithrombotic and statin is
due to CVD		warranted following stroke even though the cognitive benefits
		are unclear.
		2. Lifestyle modifications (obesity, physical inactivity,
		smoking, alcohol) should be used in adjunct with other
		interventions.
		3. Pharmacological treatment of vascular risk factors should be
		applied to mild-to-moderate dementia patients. For patients
		with severe dementia and anticipated short life expectancy, the
		risk-benefit ratio of managing vascular risks is less clear.

Treatment to	1. Cholinesterase inhibitors (donepezil, rivastigmine,
improve cognition	galantamine) and N-methyl-d-aspartate receptor antagonists
in patients with CI	(memantine) may improve cognition in CI due to CVD but did
due to CVD	not improve behaviour or functional status.
	2. The effect of these drugs is minimal in predominantly
	vascular CI.
	3. The use of cholinesterase inhibitors and memantine might be
	considered in patients with CI due to CVD on a case-by-case
	basis where there is coexistent AD or other neurodegenerative
	processes, depending on the drug's authorization in respective
	countries, the individual tolerance of the treatment and the
	perceived benefit during follow-up.
	4. Nimodipine, piracetam, huperzine A, cytidine di-
	phosphocholine and vinpocetine have no significant effect in
	improving CI due to CVD.
	5. Others like dl-3-n-butylphthalide, ginkgo biloba extract,
	cerebrolysin, and actogevin have shown a limited benefit.

STROKE REHABILITATION

Reviewer: Norhayati Hussein

Stroke rehabilitation is a goal-oriented and time-based process of assisting an individual with stroke to return to an optimal level of function, and resume activity and participation within the limits of the persisting stroke impairment. Rehabilitation approaches include restoration (repairing the bodily function), compensation (an increasing function without changing the impairment), environmental modification (increasing activity and participation), prevention of complications (e.g. recurrent stroke, shoulder pain) and maintenance (i.e. prevention of deterioration). Stroke rehabilitation occurs throughout the stroke continuum of care from the acute phase to the community. The stroke patients' needs, priorities and goals for rehabilitation vary according to the trajectory or stage of recovery.

Goals:

1. Deliver high-quality, accessible, timely, appropriate stroke rehabilitation to all clinically indicated stroke survivors.

2. Initiate early post-stroke rehabilitation to enable a patient to reach an optimal functional level, independence, and quality of life.

Components	Recommendations
Initiation of stroke	1. All stroke patients should be offered early access to rehabilitation
rehabilitation in the	and referred to the rehabilitation team as soon as possible after

Best Practice Recommendations

admission.
2. Appropriate early stroke rehabilitation should be initiated in the
acute medical ward. Early rehabilitation focuses on regaining basic
functions and minimizing complications and often of lesser intensity.
3. In the subacute phase, stroke rehabilitation progressively escalates
to more intensive interventions depending on the stroke patient's
factors (medical stability, severity of impairment, rehab readiness eg
cognition level, willingness to participate in rehabilitation), resource
availability and logistics arrangement.
1. Stroke patients are best managed in a stroke rehabilitation unit by a
specialized rehabilitation team with a special interest in stroke. The
team is ideally led by a rehabilitation physician and comprise
rehabilitation nurses, physiotherapist, occupational therapist, speech
therapist, with input from a counsellor, clinical psychologist, dietician,
pharmacist and social welfare officer.
2. The stroke rehabilitation team members should meet regularly to
discuss the assessment of new patients, review patient management
and goals, and plan for post-discharge support.
1. All post-stroke patients should undergo early screening and
assessments using standardized and validated screening and
assessment tools to determine the post-stroke impairments activity
limitation and restriction in participation, as outlined in the
International Classification of Functioning, Disability, and Health
(ICF) Model.

	2. The choice of screening tools and assessment tools should be made based on the tools' validity, reliability and availability in a stroke population to guide clinical decision-making, and perform goal-setting and discharge planning.
Management of	1. Appropriate management of post-stroke complications must be
Post-Stroke	managed accordingly. The commonly encountered complications
Complications &	include (but are not limited to):
Secondary	a. Infection e.g. aspiration pneumonia, UTI
Prevention	b. Incontinence of bowel and bladder
	c. Integumentary complications e.g. pressure injury
	d. Gastrointestinal complications e.g. GI bleeding, constipation
	e. Nutritional and hydration issues
	f. Vascular complications e.g. thromboembolism
	g. Musculoskeletal complications e.g. hypertonia with spasticity (refer
	to spasticity section), hemiplegic shoulder pain, contractures
	h. Mood impairment e.g. post-stroke depression, anxiety
	i. Sleep cycle disturbance
	j. Post-stroke seizures
	2. Appropriate stroke secondary prevention measures must be actively
	instituted and reinforced during the rehabilitation phase.
Post-Stroke	1. The presence of spasticity should be identified as early as possible
Spasticity (PSS)	by performing clinical examination and assessment using a
	standardized scale such as the Modified Ashworth Scale (MAS) or
	Tardieu Scale.

	2. Comprehensive spasticity management must include identifying and
	managing spasticity-related issues which lead to difficulty in
	performing activities of daily living and reduction in quality of life (e.g.
	pain, impaired body image etc)
	3. Post-stroke spasticity management options include:
	a. Non-pharmacological approaches: therapeutic exercises, electrical
	stimulation, orthotics, hydrotherapy.
	b. Pharmacological approaches: oral anti-spasmodic for segmental and
	generalized spasticity, intramuscular botulinum toxin-A injection for
	focal spasticity, intrathecal Baclofen Therapy (ITB) for severe
	segmental or generalized spasticity.
Rehabilitation	1. In the subacute phase, the key approaches predominantly
Interventions in the	incorporate neuroplasticity mechanisms in the brain and are more
Subacute Phase*	restorative. The stroke rehabilitation interventions are multimodal,
(Early Subacute: 7	task-specific and of higher intensity. The combination of multimodal
days to 3 months *	interventions is specifically planned based on the post-stroke
Late subacute: 3-6	impairments and patient-centred rehabilitation goals, best in an
months*)	enriched environment to enhance recovery.
Definition from	2. Common interventions for motor rehabilitation comprise of (but
Stroke Recovery and	are not limited to):
Rehabilitation	a. Mirror-based therapy
Roundtable	b. Mental imagery
Taskforce	c. Constraint-induced movement therapy
	d. Electromechanical and robotic-assisted walking
	<u>-</u>

	 e. Functional electrical stimulation (FES) f. Non-invasive brain stimulation (transcranial direct current stimulation (TdCS) or repetitive transcranial magnetic stimulation (rTMS) 3. Interventions for other post-stroke impairments (eg aphasia, neglect, visual field deficits etc) are planned according to the specific needs of
	the patient.
Caregiver Training & Education	 Relevant members of the stroke rehabilitation team should provide specific and tailored training for caregivers/families before discharge. This should include training in personal care techniques, communication strategies, physical handling techniques, safe swallowing and appropriate dietary modifications, ongoing prevention and other specific stroke-related problems, in addition to management of behaviour and psychosocial issues. The educational training of family/caregivers should also address the nature and clinical manifestations of stroke, risk factors management, potential post-stroke complications, (e.g. malnutrition, swallowing difficulties, pressure injury and aspiration pneumonia), as well as additional information on health resources available and community support. The educational content and information may need to be adjusted along the stroke recovery trajectory as the patient's needs are likely to evolve with time. Education and information can be offered throughout the stroke continuum of care to include acute care, secondary

	prevention, rehabilitation, community reintegration including work vocation.
Community Long-	1. Stroke patients living in the community should have regular follow-
Term Follow-Up	ups by respective teams in the community setting to assess recovery,
	prevent deterioration, maximize functional and psychosocial
	outcomes, and improve quality of life.
	2. Monitoring, re-evaluation and re-entry points to rehabilitation shall
	be made available throughout the stroke care continuum in the
	community.

REORGANIZATION OF STROKE NETWORK

Reviewer: Irene Looi, Wan Chung Law

Issues

1. 41,000 acute stroke patients were admitted to MOH hospitals every year and the number is increasing in trend. 11% of patients died during hospital admission while 55% were left permanently disabled.

2. In Malaysia, < 5% of AIS patients receive IVT whereas <2% receive EVT.

3. ASU/wards are not widely available throughout MOH hospitals.

4. Lack of stroke physicians, infrastructure and support teams in rural and remote areas.

5. Potential obstacles (legislation issues) in credentialing and privileging nonneurologists/non-stroke physicians to render thrombolysis.

Goals

1. To reduce stroke-related morbidities and mortalities in Malaysia.

2. To strengthen the national stroke care service which encompasses the entire chain of care from primary prevention to life post-stroke.

2. To focus resource allocation on the following:

a. Ensuring rapid access to all stroke services including emergency transport with the support of appropriate communication technologies, essential brain imaging, and IVT/MT service.

b. Developing acute stroke care units and facilities in all MOH hospitals with specialists.

c. Ensuring access to healthcare workers most skilled in stroke care.

d. To build up a multidisciplinary stroke team in all major hospitals to improve the post-stroke recovery of all patients.

e. Ensure all eligible individuals are given the best standard of treatment regardless of financial status.

Specific Interventions

1. Organisational strategies should be developed at all levels including the local level (urban, rural, and remote), taking into consideration resource availability and geographical constraints.

2. Joints efforts from the following stakeholders are essential in ensuring the smooth delivery of national stroke care service:

Stakeholders	Responsibilities
Emergency medical	1. Improve EMS prenotification and raise awareness on the
services (EMS)	benefits of prenotification to allow more patients to undergo
	timely evaluation, shorten onset-to-needle and door-to-
	needle times, and thus more eligible acute ischemic stroke
	patients being treated with tPA.
	2. This will include organised stroke teams, written protocols
	for acute triage and patient flow, an organised stroke code
	system to facilitate rapid communication between all stroke
	team members, computed tomography (CT) or magnetic
	resonance imaging (MRI) scanner clearance before patient's
	arrival, rapid access to the thrombolytic drug in the

	Emergency Department, and collaboration between
	Emergency Medicine, Neurology and Radiology.
	3. Provide adequate training for EMS staff in stroke screening
	tools for timely identification of ischemic stroke together
	with hospital prenotification.
	4. Use of validated metrics e.g. Balance, Eyes, Face, Arm
	Speech Test (BEFAST) and NIHSS score to allow swift
	identification of acute stroke and prompt initiation of
	treatment for eligible individuals.
Acute stroke ready	1. To establish more acute stroke-ready hospitals among
hospital	district hospitals with specialists to cater for the increasing
	number of stroke patients.
	2. To decentralise stroke care to district hospitals with
	specialists to reduce median onset-to-needle times and
	improve overall functional outcomes.
	3. Ensure prompt treatment and referral to CSC for
	patients who may be eligible for EVT to reduce median onset
	to reperfusion time.
	4. Adoption of telemedicine to provide evidence-based acute
	stroke treatment.
	5. Participation in certification and stroke audit
	programmes to ensure continuous delivery of high-quality
	care.
Stroke centre	1. Act as a coordinating body of the entire chain of care that

ř.	
	covers pre-hospital service, diagnostic imaging, quality
	inpatient care with access to neurosurgical intervention and
	ICU back-up, post-stroke rehabilitation and secondary
	prevention.
	2. Provision of stroke services for the population of its
	catchment area and serve as a referral centre for peripheral
	hospitals. (Hub-and-spoke model)
	3. Set up a specific task force to improve inpatient bed
	management.
	4. Setting up dedicated stroke units which offer a
	multidisciplinary treatment of strokes by highly qualified
	stroke teams in addressing acute treatment, early mobilisation
	and rehabilitation as well as secondary prevention. It should
	be equipped with defined infrastructure equipment and well-
	organised standard operating procedures.
	5. Early supported discharge and community rehabilitation
	for patients with mild-moderate stroke to reduce the length of
	hospital stays.
State Stroke	1. To lead the stroke service in the respective state in the
Champion	areas related to:
- minpion	a. Clinical management (Hyperacute stroke, acute stroke
	and stroke rehabilitation)
	b. Resource management (financial, equipment and human
	resource allocations)

	c. Training of stroke care personnel
	2. Liaise with the state health department in planning and
	ensuring the objectives of national stroke action plans are
	achieved at the state level.
	3. Work with the state health department in ensuring that a
	stroke management team with committee members are
	established at the hospital level and stroke service is provided
	by MOH guidelines.
	4. To supervise the training of stroke care personnel at every
	health facility in the state.
	5. Ensure all stroke units and stroke services undergo
	regular certifications or auditing processes for quality
	improvement.
	6. Ensure that the National Stroke Registry is regularly
	updated at the state level.
	7. Resolve issues on stroke management in the state together
	with state health department / clinical experts.
Stroke Council	1. Ensure the provision of stroke thrombolysis is following
MSN (Malaysian	medical ethics and evidence-based guidelines.
Society of	2. Act as coordinator or governance body for the provision
Neurosciences)	of stroke service among stroke physicians, geriatricians,
	emergency physicians and neuro-radiologists.
	3. Training of stroke care personnel

	4. To establish a proper stroke service credentialing and
	privileging pathway (stroke training modules, logbook,
	preceptorship in stroke centre) for physicians with a special
	interest in stroke.
	5. Identify or establish key national institutions or
	organisations that promote the training and education of
	stroke physicians.
Ministry of Health	1. Increase financial allocation for acute stroke treatment.
Malaysia	2. Increase asset allocation to establish acute stroke units
	that are equipped with modern medical technologies and
	facilities in major hospitals.
	3. To collaborate with Stroke Council MSN and NGO,
	besides having PPP (Public-Private-Partnership) to foster
	better-coordinated stroke services across the country
	4. To support the development of telemedicine systems for
	acute stroke, rehabilitation and long-term care
	5. To organise evidence-based media campaigns to promote
	public awareness of stroke symptoms, early treatment and
	benefits of a healthy lifestyle.
	6. Supporting self-management and peer support for stroke
	survivors and their families, by backing stroke support
	organisations such as NASAM.

	7. To support basic and clinical stroke research which can improve the management and treatment of acute ischemic stroke.
SOSCO / NGOs /	To work closely with various healthcare stakeholders to
Charity	support individuals who are financially disabled in stroke
Organisation/	emergency settings.
Insurance company	

THE ROLE OF SOCIAL SECURITY ORGANIZATION (SOSCO)IN STROKE CARE

Reviewer: Hafez Hussain, Parathythasan Rajaandra

Goals:

1. To provide financial assistance to SOSCO's insured individuals and make healthcare more affordable for all eligible individuals.

2. Provision of good quality and intensive rehabilitation to SOSCO's contributors in a comprehensive rehabilitation centre and ensure that they recover physically, vocationally and psychologically before finally returning to work

3. Expansion of service to other states especially East Malaysia other than the current Tun Razak Rehabilitation Centre (TRRC) and four others which are located at Tanjung Pelepas in Johor, Kuala Terengganu, Ara Damansara in Selangor, and Quill City Mall in Kuala Lumpur.

Interventions	Rationale
Disability management	Implementation of a rehabilitation plan that focuses on providing a comprehensive and customised rehabilitation plan according to an individual's functional level and capability.
Medical rehabilitation	1. Preliminary patient assessment to be carried out based on a biopsychosocial model that focuses on physical functioning factors, mobilisation levels, physiological and

Specific Interventions:

	psychological conditions as well as environmental factors
	and the individual's goal to recover or return to work.
	2. Provision of rehabilitation services which include
	physiotherapy, occupational therapy, clinical psychology,
	speech therapy, audiology, optometry and diet therapy.
Neuro-robotics and	1. Latest technologies like robotic suits improve, support and
Cybernetics	enhance the wearer's limb mobility via cybernic technology
rehabilitation	that combines interactions between man, machine and
	information to speed up the recovery of patients.
	2. For example, Social Security Organisation (SOCSO) in
	collaboration with Cyberdyne Inc. Japan has successfully
	established the first Neuro-Robotics Rehabilitation &
	Cybernetics Centre in Malaysia at SOCSO Tun Razak
	Rehabilitation Centre, Melaka. This centre is equipped with
	Hybrid Assistive Limb (HAL) Robot Suit, the latest
	neurorobotic technology equipment from Cyberdyne Inc.
	Japan assists people with paralysis or weakening limbs due
	to injuries or disorders to the central nervous system to regain
	the ability to walk.
Vocational	Ensure that patients are equipped with necessary skills to live
rehabilitation	independently and return to work.
Facilities &	Rehabilitation centre which also provides comfortable
accommodation	accommodation/wards, sports arena, dispensary, cafe and

	self-ordering food system.
Digital platform	Promote the use of the PERKESO INSPIRE DR Portal among healthcare providers to facilitate medical reimbursement for eligible patients.
Neurosurgery team	Offer vagus nerve stimulation under the support of neurosurgery team and to enhance plasticity and support recovery of limb function after stroke.
University hospitals	Collaboration with university hospitals in: a. Stroke prevention programme, eg the SOSCO-UPM "Early Stroke Disability Prevention Programme " b. Research related to rehabilitation engineering (eg Universiti Malaysia Perlis, Universiti Tun Hussein Onn Malaysia)

TELEMEDICINE IN LONG TERM STROKE CARE

Reviewer: Wan Chung Law

Challenges

- 1. Medico-legal liabilities (lack of safeguards for data privacy).
- 2. Technological and infrastructure interoperability, and digital literacy.
- 3. Cost of implementation.
- 4. Issues with reimbursement and subsidies.

Goals:

1. Providing care which is patient-centred, cost-effective, convenient and yields greater productivity.

- 2. Quick access to better and equitable neurological care.
- 3. Reduce risk of stroke-related complications and disabilities due to timely decisions
- on patient management.
- 4. Minimise patient transfer expenses and risks.
- 5. Improve diagnostic accuracy in emergency care.

Specific interventions:

1. Identify problems that are feasible to be used for telemedicine, i.e. symptoms that are persistent or worrisome, not life-threatening but need to be addressed.

- a. Stroke risk factors control
- b. Acute stroke or non-stroke-related problems (pressure sore/diarrhoea/constipation)
- c. Progress of stroke rehabilitation
- 2. Points to be considered when choosing candidates for telemedicine:

a. Social background (lack of caregiver support, logistic and finance)

b. Mental health issues of both patient and caregivers

c. Safety precautions (aim for social distancing during the pandemic)

3. Ensure prerequisites for stroke telecare are met, i.e.

a. Patient and/or caregivers consented to virtual sessions and recording

b. Patient and/or caregivers are digitally literate

c. Availability of home monitoring device (Blood pressure pump, glucometer etc)

d. Achievable objectives for each session (summarize instructions and goals)

e. Supports are provided to patients and/or caregivers in case of emergency (safety netting)

f. List of prescriptions, blood results (if any)

g. Appropriate settings i.e. quiet location with good lighting and strong wifi's signal

4. Adherence to criteria for long-term shared care follow-up (adapted from Integrated

Care Pathway for Poststroke iCAPPS):

a. Age \geq 40 years old at the onset of stroke

- b. No concurrent heart disease
- c. Coronary artery stenosis if present, lumen patency $\geq 50\%$
- d. Normal renal function
- e. Well-controlled stroke risk factors

Areas of improvements

1. Regular audit of telestroke service by maintaining a registry of patients contacted for stroke telecare, considering the storage of telecare consultations for reference and recording the outcome of consultations.

2. Using patient and caregivers' reported outcome/ satisfaction with stroke telecare to

guide service improvement strategies.

Disclaimer

This site is for educational purposes only, it is not a substitute for professional medical advice, diagnosis or treatment. The contents are sourced from presenters of the Malaysia Stroke Conference 2022 and various international and local stroke guidelines. Every attempt has been made to give appropriate credit to the sources of the information. If any of the information is incomplete or in error, please do not hesitate to give feedback to us.